
Slide 1

Extending Tuscany

Raymond Feng
rfeng@apache.org
Apache Tuscany committer

Slide 2

Contents

 What can be extended?
 How to add an extension module?
 How to add an implementation type?
 How to add a binding type?
 How to add a interface type?
 How to add a data binding type?

Slide 3

What can be extended?

 The SCA assembly model can be extended with
support for new interface types, implementation
types. and binding types. Tuscany is architected for
extensibilities including:
 Implementation types
 Binding types
 Data binding types
 Interface types

Slide 4

Add an extension module

The Tuscany runtime allows extension
modules to be plugged in. Tuscany core
and extension modules can also define
extension points where extensions can
be added.

Slide 5

Life cycle of an extension module

 During bootstrapping, the following sequence will happen:
 All the module activators will be discovered by the presence of a file named as

META-INF/services/org.apache.tuscany.sca.core.ModuleActivator.
 The activator class is instantiated using the no-arg constructor.
 ModuleActivator.start(ExtensionRegistry) is invoked for all the modules. The

module can then get interested extension points and contribute extensions to
them. The contract bwteen the extension and extension point is private to the
extension point. The extension point can follow similar patterns such as Registry. If
it happens that one extension point has a
dependency on another extension point, they can linked at this phase.

 During shutting down, the stop() method is invoked for all
the modules to perform cleanups. A module can choose to
unregister the extension from the extension points.

Slide 6

Add an extension module
 Implement the org.apache.tuscany.core.ModuleActivator

interface. The implementation class must have a no-arg
constructor. The same instance will be used to invoke all
the methods during different phases of the module
activation.

 Create a plain text file named as META-
INF/services/org.apache.tuscany.core.ModuleActivator.

 List the implementation class name of the
ModuleActivator in the file. One line per class.

 Add the module jar to the classpath (or whatever
appropriate for the hosting environment).

Slide 7

Add an implementation type

SCA allows you to choose from any one
of a wide range of implementation
types, such as Java, Scripting, BPEL or
C++, where each type represents a
specific implementation technology.

Slide 8

Add a new implementation type

 Define an interface/factory to represent
the metadata for the implementation

 Implement the StAXArtifactProcessor to
read/resolve/write the model

 Add the runtime logic by implementing
the ImplementionProvider
Factory/ImplementionProvider SPI

 Contribute an extension module

Slide 9

Define and process the model
 A component implementation requires some metadata

 The model typically consists of 4 parts
 The CRUDImplementation interface which extends

org.apache.tuscany.assembly.Implementation
 The CRUDImplementationFactory interface which defines

createImplementation() method
 The default implementation of CRUDImplementation
 The default implementation of CRUDImplementationFactory

 Provides an implementation of StAXArtifactProcessor to
read/write the model objects from/to XML
 CRUDImplementationProcessor (customized processor) or
 org.apache.tuscany.sca.assembly.xml.DefaultBeanModelProcessor

Slide 10

Provide the invocation logic

 CRUDImplementationProvider implements the
ImplementationProvider interface

 Methods on ImplementationProvider SPI
 createInvoker(): Create an invokoer to invoke a

component with this implementation type
 start(): A method to be invoked when a component

with this implementation type is started. (We simply
print a message for the CRUD)

 stop(): A method to be invoked when a component
with this implementation type is stopped. (We simply
print a message for the CRUD)

Slide 11

Plug the implementation type into
Tuscany
 The extension module containing the CRUD

implementation type can be plugged into Tuscany
as follows:
 Register the StAX processor in META-

INF/services/org.apache.tuscany.sca.contribution.processor.StAXArtifactProcessor

 org.apache.tuscany.sca.assembly.xml.DefaultBeanModelProcessor;qname=http://crud#im
plementation.crud,model=crud.CRUDImplementation,factory=crud.CRUDImplementationF
actory

 Register the model factory in META-
INF/services/crud.CRUDImplementationFactory

 Register the ImplementationProviderFactory in META-
INF/services/org.apache.tuscany.sca.provider.ImplementationProviderFactory

 Register the extension schema in META-
INF/services/org.apache.tuscany.sca.contribution.processor.ValidationSchema

Slide 12

Add a binding type

References use bindings to describe the
access mechanism used to call a service.
Services use bindings to describe the
access mechanism that clients have to
use to call the service.

Slide 13

Add a new binding
 Define an interface to represent the

metadata for the binding (model and
factory)

 Implement the StAXArtifactProcessor to
read/resolve/write the models

 Add the runtime logic by implementing
the BindingProviderFactory,
ReferenceBindingProvider,
ServiceBindingProvider SPIs

 Contribute an extension module to
Tuscany

Slide 14

Define and process the model
 A binding requires some metadata, for example,

<binding.echo>
 The model typically consists of 4 parts

 The EchoBinding interface which extends org.apache.tuscany.assembly.Binding
 The EchoBindingFactory interface which defines createEchoBinding() method
 The default implementation of EchoBinding (EchoBindingImpl)
 The default implementation of EchoBindingFactory (EchoBindingFactoryImpl)

 Provides an implementation of
StAXArtifactProcessor to read/write the model
objects from/to XML
 EchoBindingProcessor or
 org.apache.tuscany.sca.assembly.xml.DefaultBeanModelProcessor

Slide 15

Provide the outbound invocation
logic
 Implement ReferenceBindingProvider

interface to provide invocation logic for
the given binding type
 EchoBindingProvider implements the

ReferenceBindingProvider interface
 Methods on ReferenceBindingProvider SPI

 createInvoker(): Create an invoker to invoke a
component with this binding type

getBindingInterfaceContract(): Get the interface
contract imposed by the binding protocol layer

Slide 16

Provide the inbound invocation logic

 Implement ServiceBindingProvider interface
to provide invocation logic for the given
binding type
 EchoBindingProvider implements the

ServiceBindingProvider interface
 Methods on ServiceBindingProvider SPI

getBindingInterfaceContract(): Get the interface
contract imposed by the binding protocol layer

Slide 17

Control the life cycle of bindings

 Methods on
ReferenceBindingProvider/ServiceBindingProvider SPI

start(): A method to be invoked when a
component reference/service with this
binding type is started. (We simply print a
message for the Echo reference)

stop(): A method to be invoked when a
component reference/service with this
binding type is stopped. (We simply print a
message for the Echo reference)

Slide 18

Plug the binding type into Tuscany

 The extension module containing the ECHO
binding type can be plugged into Tuscany as
follows:
 Register the StAX processor in META-

INF/services/org.apache.tuscany.sca.contribution.processor.StAXArtifactProcessor

 org.apache.tuscany.sca.assembly.xml.DefaultBeanModelProcessor;qna
me=http://echo#binding.echo,model=echo.EchoBinding,factory=echo.
EchoBindingFactory

 Register the model factory in META-
INF/services/echo.EchoBindingFactory

 Register the ImplementationProviderFactory in META-
INF/services/org.apache.tuscany.sca.provider.BindingProviderFactory

 Register the extension schema in META-
INF/services/org.apache.tuscany.sca.contribution.processor.ValidationSchema

	Extending Tuscany
	Contents
	What can be extended?
	Add an extension module
	Life cycle of an extension module
	Add an extension module
	Add an implementation type
	Add a new implementation type
	Define and process the model
	Provide the invocation logic
	Plug the implementation type into Tuscany
	Add a binding type
	Add a new binding
	Slide 14
	Provide the outbound invocation logic
	Provide the inbound invocation logic
	Control the life cycle of bindings
	Plug the binding type into Tuscany

