
Felix Goes to Tuscany

Applying OSGi modularity
after the fact

Luciano Resende

lresende@apache.org

Graham Charters

charters@uk.ibm.com

About Apache Tuscany
• Tuscany provides a component based

programming model which simplifies
development, assembly and deployment
and management of composite
applications in SOA.

• Apache Tuscany implements SCA
standards defined by the OASIS OpenCSA
and also provides extensions based on real
user feedback.

About Apache Felix
• Apache licensed open source

implementation of OSGi R4
– Framework (in progress, stable and functional)

• Version 1.2.1 currently available

• Implements additional services
– OSGi Bundle Repository (OBR)
– IPOJO - POJO-based component model
– Maven Bundle Plugin
– ...

Tuscany Environment
before OSGi

• Modularization inspired in OSGi
– 150+ Modules

• Multiple Extensions with different
levels of dependencies
– 120+ 3rd Party Dependencies

• Maven based build

Motivation for OSGi
• Better class loading mechanism for our modules
• Create clean boundaries between sub-systems
• Facilitate embedding Tuscany in OSGi based

environment
• Without OSGi Java modularity is broken

– OO modularity too fine-grained
– Severely limited package modularity
– Jars have no modularity characteristics
– Classpath ordering defines which class you get

OSGi & SCA
• Support OSGi as a packaging

mechanism for SCA application
artifacts (contributions)
– SCA specification already mentions

OSGi as package skin
– Leverage OSGi import/export to import

java artifacts from different SCA
application artifacts (contributions)

• Support OSGi as an SCA Component
Implementation Type
– Use SCA to assemble OSGi Bundles

with other implementation technologies

Constraints
• No free-reign to drive through the changes
• Community Concerns:

– Must not cease non-OSGi support
– Must not significantly increase distribution

footprint
– Must not significantly increase build time
– Must not significantly increase runtime costs
– Must not overburden non-OSGi community

• These constraints influence speed of and
approach to OSGi adoption

Supporting Tools
• We have found various tools available

– Dependency analyze tools
• BND

– Bundle dependency visualization
• <coderthoughts /> - GMF
• <coderthoughts /> - ManyEyes

– Maven related tools
• Various maven plugins

• Our experience
– In general, most of the tools have

particular issues that didn’t allow us to
have a fully OSGi experience

Dependency Analysis Tools
• BND

– Tool for creating Bundles
– Analyzes code to determine dependencies
– Supports directives to tailor OSGi Manifest
– Supports many build options

• Command Line
• Ant
• Maven
• Eclipse

http://www.aqute.biz/Code/Bnd

Apache Felix Maven Bundle
Plugin

• The 'glue' between Maven and BND
...
<plugin>

<groupId>org.apache.felix</groupId>
<artifactId>maven-bundle-plugin</artifactId>
<configuration>

<instructions>
<!-- Bundle versioned from Tuscany version -->
<Bundle-Version>${tuscany.version}</Bundle-Version>
<!-- Bundle Symbolic name -->
<Bundle-SymbolicName>org.apache.tuscany.sca.api</Bundle-SymbolicName>
<!-- Bundle description from pom description -->
<Bundle-Description>${pom.description}</Bundle-Description>
<!-- Export org.osoa.sca and all sub-packages -->
<Export-Package>org.osoa.sca*</Export-Package>
<!-- No Import-Package so calculate imports from code dependencies -->

</instructions>
</configuration>

</plugin>
...

http://felix.apache.org/site/apache-felix-maven-bundle-plugin-bnd.html

Apache Felix Maven Bundle
Plugin - Caveats

• Test dependencies are ignored during
calculation of imported packages
– Issues when tests have references to

external packages

• Current solution
– Created maven plugin that consider test

dependencies and properly find import
packages and mark them as optional

Bundle dependency
visualization

• <coderthoughts /> + GMF
– ASL2 licensed output from a blog by

<coderthoughts />
– Uses EMF to model and save Bundle

runtime dependency resolution
– Introspector bundle analyzes and saves

dependencies from a running system
– Uses GMF for Visualization

http://coderthoughts.blogspot.com/2008/04/osgi-bundle-dependency-visualizer-in.html

<coderthoughts /> + GMF
• Dependency analysis works very well
• GMF visualization does not scale!

ManyEyes
• IBM AlphaWorks shared data visualization service
• Visualization options include

– Maps, Line Charts, Pie Charts, Tree Maps, Network
Diagrams, and many more

• Used Network Diagram to visualize dependencies
• DataSet is simple table of dependant to dependee

– Can use 'cat', 'grep' and 'sed' to slice-n-dice the data and
experiment with combining Bundles

• <coderthoughts /> dependency analysis used to create
DataSet

http://services.alphaworks.ibm.com/manyeyes/home

<coderthoughts /> + ManyEyes

http://services.alphaworks.ibm.com/manyeyes/view/SWhH8QsOtha6MtkkFzD9Q2~

Maven builds and OSGi
• Maven 2.0.9+

– Fixes for MNG-3396 and MNG-3410
• Fixes that allow definition of specific

dependency version when dependency
range was defined.

Maven builds and OSGi -
Caveats

• Version ranges have different meanings in Maven
and OSGi
– OSGi

• x.y.z.q > x.y.z
• 3.3.0 < 3.3.0-v20070606-0010
• 3.3.0-v20070606-0010 is in [3.3,4.0)

– Maven
• x.y.z.q < x.y.z
• x.y.z-q < x.y.z
• 3.3.0-v20070606-0010 < 3.3.0
• 3.3.0-v20070606-0010 is not in [3.3,4.0)

• 1.0.0-SNAPSHOT = work in progress towards 1.0.0
• Workaround

– use <dependencyManagement> to explicitly define the
version to be used

– Requires maven 2.0.9+

Maven Eclipse Plugin

• Used to generate Eclipse IDE Files
for given maven projects
– *.classpath
– *.wtpmodules
– .settings folder
– etc

Maven Eclipse Plugin -
Caveats

• Eclipse plugin add dependency jars
directly in the project classpath in
addition to the “eclipse bundle class
path container”

• Current solution
– Created maven plugin to properly

configure project classpath to use the
“eclipse bundle class path container”
and avoid adding the dependency jars
directly to the classpath

Maven eclipse compiler

• The Sun compiler is not aware of
OSGi Import/Export

• The maven-eclipse-compiler plugin
allows us to directly use the Eclipse
compiler that have better support for
OSGi bundles

Maven eclipse compiler -
Caveats

• We found various issues with the
eclipse compiler plugin
– Warnings would cause plugin to hang

• In progress solution
– Using a forked version of the maven-

eclipse-compiler plugin
– Bring-up plugin to working stage
– Enhancing to enforce OSGi

Import/Export

Applying OSGi to Tuscany

One Big Bundle of Joy
• Recommended practice when moving to

OSGi*
– Create one big bundle containing

application and dependent libraries
– Get it working in OSGi
– Gradually replace dependent libraries

with Bundles
– Keep it working!

• This is how we started...
– 1 Bundle ~ 60MB made from 200+ jars

*http://developers.sun.com/learning/javaoneonline/2008/pdf/TS-5122.pdf

Decomposition First Attempt
• Identified five categories of jars and created

corresponding Bundles
– org.apache.tuscany.sca.api.jar 18,701

– org.apache.tuscany.spi.jar 430,563

– org.apache.tuscany.runtime.jar 538,660

– org.apache.tuscany.extensions.jar 1,374,045

– org.apache.tuscany.depends.jar 57,872,558

• Issues:
– Too coarse-grained to be of real value
– No opportunity for sub-setting
– Not modular

Re-using Existing
Decomposition

• Tuscany already decomposed into many Maven
modules

• Benefits:
– Maven Bundle Plugin makes it easy to create

Bundles
– Matches community's existing understanding
– Same bundles can be used outside OSGi
– Easily sub-set as Tuscany intended

• Issues:
– Lots of classloader issues

• Assumed single classloader
– Difficult to consume (200+ bundles)

Granularity
• 200+ bundles cumbersome
• Multiple bundles required to enable

one capability
• Much debate about right level of

granularity
• Conclusion

– Fine-grained bundles suitable for
developer view

– Features used to aggregate bundles to
provide a user view

• Inspired by Eclipse Features

Third-party Libraries
• Many third-party libraries not enabled for OSGi
• Repositories are emerging

– OSGi Bundle Repository (OBR)
– Apache Felix Commons
– Eclipse Orbit
– SpringSource Bundle Repository

• Tuscany has ~120 pre-requisite third-party
libraries

• Version and footprint constraints influence
choice of approach
– Project not comfortable to go with repository

choice

Third-party Library: wrap
• Wrap the Jar in a Bundle

– Bundle-Classpath: third-party.jar

• Pros
– Works for signed Jars
– Can aggregate multiple Jars

• Cons
– Jar no longer works in non-OSGi environment (doubles the

build footprint)

third-party-osgi.jar

third-party.jar BND

MANIFEST
Bundle-Classpath: third-party.jar
Import-Package: ...
Export-Package: ...
...

third-party.jar

Install

OSGi Framework

third-party-osgi.jar

third-party.jar

MANIFEST
Bundle-Classpath: third-party.jar
Import-Package: ...
Export-Package: ...
...

third-party.jar

Third-party Library: convert
• Convert the Jar to a Bundle

• Pros
– Jar works in non-OSGi environment (no footprint issue)

• Cons
– Doesn't work for signed Jars
– May affect library licensing
– Can't aggregate multiple Jars

third-party.jar BND

MANIFEST
Import-Package: ...
Export-Package: ...
...

Install

OSGi Framework

third-party.jar

MANIFEST
Import-Package: ...
Export-Package: ...
...

Third-party Library: virtual
bundle

• Convert Jar to a Bundle at runtime
– Manifest pre-generated or created on-the-fly

• Pros
– Jars completely unchanged
– Works for signed Jars

• Cons
– No 'real' bundle to work with during development
– Messy – two artefacts to manage

third-party.jar
load

MANIFEST
Import-Package: ...
Export-Package: ...
... load

B
N

D

OSGi Framework

Third-party Bundle

MANIFEST
Import-Package: ...
Export-Package: ...
...InstallInstaller Bundle

Third-party Library: Unpacked
wrap

• Unpacked wrap style bundle
– Bundle-Classpath: third-party.jar

• Pros
– Works for signed Jars
– Can aggregate multiple Jars

• Cons
– Dynamic resolving might have performance implications

• Working on enhancing the tools to use BND logic to calculate import
packages

third-party.jar

MANIFEST
Bundle-Classpath: third-party.jar
Dynamic-Import-Package: *
Export-Package: ...
...

third-party.jar

Install

OSGi Framework

third-party-osgi.jar

third-party.jar

MANIFEST
Bundle-Classpath: third-party.jar
Import-Package: ...
Export-Package: ...
...

OSGi Versioning
• Package exports can specify a version
• Package imports can specify a version range
• The OSGi resolver 'wires' imports to exports

Bundle
A

Bundle
B

Export-Package:
org.pkg.x;version=1.6.2

Import-Package:
org.pkg.x;version=”[1.5.0, 2.0.0)”

Bundle
C

Export-Package:
org.pkg.x;version=2.0.0

Versioning

The Idealist The Realist (paranoid)

“Apache Commons
has guidelines, we

should trust them to
do the right thing.”

“Without the testing,
we can't be sure of

anything.”

• Version range [1.5.0, 2.0.0)
• Flexible
• Relies on others to do the

right thing
• Risky
• Makes an untested support

statement

• Fixed version [1.5.0, 1.5.0]
• Inflexible
• Will get the version you

tested against
• Safe
• Inhibits bundle updates

Tuscany community chose to start with fixed versions
with a view to introducing ranges through experience

Extension Registry Pattern
• Module declares extension point
• Modules contribute extensions which implementation

extension points
• Extension Registry manages extension point and extension

matching
• Used extensively in Eclipse (not standard OSGi and not part of

Felix)

Extension

Extension Point

Extension

Extension Point
managed by

Extension Registry

http://www.eclipsezone.com/articles/extensions-vs-services/

Tuscany Extensibility

• OSGi optional so Tuscany needed its own thing
– inspired by Extension Registry

• Tuscany SPI defines extension points
• Extension Modules contribute

– Bindings (REST, json-rpc, SOAP, ...)
– Implementation Types (POJO, BPEL, OSGi, ...)
– Interface Types (Java, WSDL)

Summary
• It is indeed possible !

– OSGi effort is making good progress
• Current Approach

– Tuscany Modules � OSGi Modules
– 3rd Party Libraries � OSGi Modules

• Using Unpacked wrap style bundle
– Bundle Manifests available in source repository

and tweaked for optional test dependencies
– Tools are still an issue

• Have already created several toolings
• Looking for a maven-eclipse-compiler that would

enforce OSGi import/export

Useful Links
• Apache Tuscany

– http://tuscany.apache.org

• Apache Felix

– http://felix.apache.org

• Eclipse Equinox

– http://www.eclipse.org/equinox/

• OSGi Alliance

– http://www.osgi.org

• OSGi Best Practices

– http://developers.sun.com/learning/javaoneonline/2007/pdf/TS-1419.pdf

• Converting (Large) Applications to OSGi

– http://developers.sun.com/learning/javaoneonline/2008/pdf/TS-5122.pdf

